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Background

The use of genetically altered animals has become routine within biomedical and 

pharmaceutical research. Genetic modifications include transgenic, knockout and other 

forms of genetic alteration, and naturally occurring or induced mutations (European 

Commission 2020a). Emerging gene editing technologies, notably Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR)-Cas9, have made it possible to remove 

many technical and economic barriers which, so far, hindered the development of 

genetically altered animals. Scientists are now able to alter targeted DNA sequences 

through the adding, replacing, or deleting of one or more DNA base pairs of almost any 

cell or organism in a simple, fast, and relatively cheap way (Bortesi et al. 2016). For 

instance, the development of genetically altered mouse models can cost up to 81% less 

(Liu et al. 2017), and can take less than a month, while previous methods required months 

or even years to establish such models (Xiao et al. 2021). However, a number of serious 

ethical, welfare and safety concerns arise from the creation and use of genetically 

altered animals.

First, the development of modern gene editing technologies has significantly increased 

the number of genetically altered animals and species used in research to understand 

gene function; create models of human disease; study drug metabolism, chemical toxicity 

and carcinogenicity; produce organs (Lu et al. 2021; European Commission 2020b; 

Reardon 2016); and improve the health of companion animals (Sohal et al. 2020). In 

particular, with the availability of CRISPR-Cas9 technology, the number of genetically 

altered non-human primates is increasing, with a number of researchers arguing for their 

necessity in biomedical research (Kang et al. 2019; Luo, Li, and Su 2016). Since the

Genetically altered animals used in biomedical 
research

https://www.zotero.org/google-docs/?5GTgdX
https://www.zotero.org/google-docs/?uhRyvI
https://www.zotero.org/google-docs/?g01Fpd
https://www.zotero.org/google-docs/?YO2bxO
https://www.zotero.org/google-docs/?8TIGuJ
https://www.zotero.org/google-docs/?JdvMHz
https://www.zotero.org/google-docs/?6hzk2K


3

Action required
 breeding of genetically altered animals is subject to the laws of genetics, the offspring do 

not always carry the genetic alteration of interest, and large numbers of animals are killed 

without being used in a study (the Netherlands National Committee for the protection of 

animals used for scientific purposes 2015).  

Furthermore, millions of animals are killed every year for the sole purpose of ‘producing’ a 

modest number of genetically altered animals for scientific procedures. According to the 

latest EU statistical data on the use of animals for scientific purposes, of the 10 million 

animals involved in genetically altered research, 2.65 million were used for research 

purposes, 1.21 million were used for the creation and maintenance of genetically altered 

lines, while more than 6.1 million animals were bred and killed for the creation and 

maintenance of genetically altered lines, but not used in scientific procedures (European 

Commission 2020b; European Commission 2022). The large number of animals required to 

produce viable offspring carrying the desired genetic alteration is best illustrated in 

non-human primates. A recent study has shown that the percentage of embryos that are 

transferred and result in a live, gene-edited non-human primate offspring ranges from 0 to 

16.28%, despite the transfer of a large number of embryos to many surrogate mothers 

(Schmidt et al. 2022). While suggestions have been made that modern gene editing 

technologies can help reduce the number of animals needed for research (eBioMedicine 

2022; Kim, Moon, and Kim 2019; Greenfield 2017), it is more likely that the number of 

genetically altered animals will further increase as researchers look to apply genetic 

technologies involving animals to more and more areas of scientific research . 

Second, the impact of gene editing on animal welfare is a major concern. The creation of 

genetically altered animals involves procedures that may cause pain, suffering and 

distress at every step (Bailey 2019), and gives rise to animals that can exhibit a variety of 

phenotypes, some causing no adverse effects, and some causing adverse outcomes and 

lasting harm (European Commission 2021a). In addition, unintended DNA alterations 

adjacent to, or away from the target site are persistent and often more significant than 

expected (Höijer et al. 2021; Ono et al. 2019; Kosicki, Tomberg, and Bradley 2018), and 

can lead to the loss of function of non-targeted genes, causing adverse outcomes and 

fatal abnormalities (Bailey 2019; Komor, Badran, and Liu 2017). Despite the many efforts to 

detect and reduce these on- and off-target effects, they still remain incredibly high, and 

may never be completely removed. Moreover, CRISPR-Cas9 technology can alter genes 

at different stages of embryonic development resulting in organisms carrying altered and 

unaltered cells (Mehravar et al. 2019), a condition that can cause severe health problems
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 (Ishii 2017).

Third, the generation of humanised, transgenic and chimeric animals raises serious 

questions about the boundaries between animals and humans. These animals are used to 

produce organs, tissues and pharmaceuticals for human benefit (Koloskova et al. 2020; 

Hryhorowicz et al. 2017; Wu et al. 2017; Bourret et al. 2016), or in basic research dissociated 

from any direct, tangible societal benefit (Shi et al. 2019; Mansour et al. 2018). Ethical 

concerns related to the breeding and use of these particular genetically altered animals 

include the generation of traits in animals that are considered to be exclusively or typically 

human, and the exploitation of animals by using them as research tools or organ donors 

for uncertain human benefit.

Finally, while it is widely claimed that modern gene editing techniques, notably 

CRISPR-Cas9, can make a major contribution to improving our knowledge of human 

diseases, and advancing research by developing efficient treatments (Wong et al. 2021; 

Alagoz and Kherad 2020;  Lee, Yoon, and Kim 2020; Birling, Herault, and Pavlovic 2017), 

the failure of many genetically altered animal models to accurately predict human 

response to drugs and disease is increasingly acknowledged in scientific literature (van 

der Velden et al. 2022; Bailey 2019; Wagar et al. 2018; Akhtar 2015; Garner 2014; Greek 

and Hansen 2013). Animal-human species differences, the inability to recreate complex 

human diseases in other animals, the poor applicability of animal-based models to clinical 

settings, and adverse effects of laboratory procedures and conditions on animals’ 

physiology and behaviours are some examples of key factors that contribute to the poor 

rates of translation of findings from genetically altered animals to humans. Furthermore, 

safety issues related to CRISPR-Cas9 technology are being addressed at multiple levels as 

the high frequency of undesired DNA alterations caused by the gene editing process 

raises serious concerns for therapeutic and clinical applications (Teboul et al. 2020; 

Kanchiswamy et al. 2016; Fu et al. 2013). 

Genetically altered human-based cell lines and organoids have already shown potential 

for enhancing our understanding of human diseases and accelerating the discovery of 

effective treatments (Hendriks, Clevers, and Artegiani 2020; Bassett 2017; Brookhouser et al. 

2017; Driehuis and Clevers 2017). The genetic alteration of human-based models has 

many advantages as it adds another level of sophistication that allows the study of genes 

and mutations in different human genetic backgrounds, as well as the establishment of 

cellular models of disease from individual patients, offering therefore exciting possibilities
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for precision medicine (Tang et al. 2022; Wang, Ye, and Jang 2021). The combination of 

gene editing technologies and human-based models also provides a unique opportunity 

to study human disease-associated mutations that cannot be investigated in other 

animals due to a low degree of conservation of these mutations between species (Bassett 

2017). Additionally, while unintended DNA alterations are a serious ethical and welfare 

concern in animals, they can be thoroughly studied in human cell lines without raising 

such concerns. 

Transitioning to non-animal models can reduce the failure rate during drug development 

and significantly improve our understanding of human diseases by producing data based 

on human biology, leading to effective and personalised therapies (Ewart et al. 2021; 

Hutchinson, Owen, and Bailey 2022). The toolbox of non-animal models has considerably 

grown in recent years and includes, for instance, organ-on-chip technology, sophisticated 

computer simulations, and 3D cultures of human cells (Madden et al. 2020; Clevers 2016; 

Adcock et al. 2020; Romania et al. 2021; Rossi et al. 2020; Witters et al. 2021; Wilkinson 2019; 

Merkes 2019). 

Furthermore, growing complex artificial organs on demand in vitro will be a 

game-changer in the field of organ transplantation that might become reality within the 

next decades. For instance, human organoids and human tissue and organ engineering 

using 3D bioprinting technologies are examples of promising human-based solutions to 

meet the demands for human organ and tissue transplantation (Tang et al. 2022; Hsia et 

al. 2021; Klak et al. 2020; Noor et al. 2019). In the meantime, possible alternative 

approaches to the use of genetically altered animals as organ donors exist, and could be 

further enhanced, including for example facilitating wider support for the deployment of 

public health policies that presume consent (or default ‘opt-in’) for organ donation.  

Large sums of money are flowing towards animal-based research methods, whereas 

investment in non-animal based research is still very limited. In Horizon 2020, 

approximately 48 million Euros have been committed annually to research projects 

directly aimed at developing non-animal methods, but this amount represents only 0.5% of 

the total annual budget of this EU framework programme. With regard to gene editing, a 

recent study published by the European Commission revealed that, from 2007 to 2020, EU 

research and innovation funding for new genomics techniques in health and 

medical-oriented research amounted to €2.5 billion, of which €1.2 billion was dedicated to 

animal studies using whole organisms, and €1.8 billion to basic research projects focus-
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ing on changes to the genetic material of cells in vitro (European Commission 2021b). 

However, the report does not specify the species from which these cells were collected. 

With CRISPR-Cas9 becoming the gene editing tool of choice in biomedical and 

pharmaceutical research, increased financial support for animal-based research to 

develop novel gene editing techniques can be expected under the 2021-2027 EU 

framework programme (Horizon Europe).

Eurogroup for Animals’ position

Eurogroup for Animals is opposed to the use of animals in science, testing and education 

which causes animals pain, suffering, distress or lasting harm. This includes the use of 

genetically altered animals in biomedical research given the serious ethical and animal 

welfare concerns that it raises. We strive for a paradigm shift in society, policy and 

academia towards humane, innovative, and animal-free science that can offer more 

effective and accurate humane solutions for biomedical research. Until full replacement 

of animal experiments is achieved, all projects involving the use of genetically altered 

animals for scientific purposes must be subject to a rigorous, transparent and publicly 

accountable system of regulation, oversight and inspection. This should include a critical, 

independent review of the justification for, and the scientific or wider societal benefits or 

impacts of, the development or use of genetically altered animals, as well as a rigorous 

assessment of how well the 3Rs principles (replacement, reduction and refinement) have 

been applied.
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